Corporate Partnership

Biotechnology & medical device clinical trials
We provide statistical and bioinformatics services to small and medium sized biotechnology and other clinical research firms to facilitate the highest of research methodology and data analysis standards.
 biostatistics and bioinformatics capabilities enable you to synergise research insights from a variety of data sources including biomedical, clinical, genomics, epidemiological, public health
Different data sources can be combined to create more nuanced research insights.

R&D Studies // Clinical Trials Consulting

As biostatistical experts, we design and analyse clinical trials and R&D studies for industry sectors such as biotech/med-tech and pharma. We work with CROs to deliver advanced statistical services on such projects. We can combine our statistical knowledge with bioinformatics capabilities to design and analyse bio-marker guided clinical trials and exploratory studies. For more information on the ways we can assist in clinical trials and statistical analysis in general, please see below.

Pre-Clinical & Phase I-IV Clinical Trial Design

​The following is an overview of clinical trial components we can be contracted for:

Pre-clinical trials:

Pre-clinical trials, whether in-vitro or in-vivo, are an essential regulatory requirement in ensuring the safety and efficacy of a novel drug or device prior to testing on humans in phase I to IV trials.
As with pilot studies in other clinical domains, while not mandated, it is of great advantage to recruit the services of a qualified biostatistical consultant in the design, implementation and analysis of any pre-clinical trial. Doing so will enhance your ability to move your research to the human clinical trial phase and to complete the process with greater efficiency.

Our experienced biostatisticians can be of assistance with the following components of your pre-clinical trial:

  • Study design including experimental framework, statistical methodology and data collection methods that best address your research objectives.
  •  Development of a detailed study protocol in line with good laboratory practice (GLP) guidelines that will help to reduce bias and offer clarity to all laboratory staff.
  • Customised randomization schedules to minimise experimental bias. Commonly these will include one of the following based on your individual study needs: randomised block and Latin squares design for in-vitro studies, or randomized, randomized block, factorial, sequential, crossover and Latin square designs for in-vivo studies.
  •  Sample size calculation. This will be tailored to the specific statistical requirements of your data and will optimise statistical power of your final analysis while working within practical limitations.
  •  Development and adaption of an efficient statistical analysis plan (SAP).
  •  All aspects of statistical analysis from data preparation to reporting and manuscript production.

Getting things right first time will save you time and money, minimising resource expending mistakes and the ethical concerns of unnecessarily repeating animal experiments. You will be able to draw robust conclusions from your research which will have benefited from a minimisation in bias.

Phase I to IV trials: 

In addition to the above activities, our contribution to phase I to IV trials can consist of:

  • Design and implementation of equivalence or non-inferiority trials, Dose effect trials, or Phase II/III combination trials.
  • Development of adaptive designs with sub-group analyses or multiple endpoints. Risk reduction through adaptive trial design elements like sample-size re-estimation, dose-selection and general group-sequential designs and analyses and setting up appropriate “go/no-go decision points” and proposals for quantitative evaluations to support such decisions.
  • Trial simulation: clinical trial simulations can be used to document and evaluate the statistical properties of complex designs and/or to aid in selecting between several alternative design possibilities.
  • Exploratory analyses (e.g. subgroup analyses and characterisation of participant demographics) to generate hypotheses for further research and next steps of development.
  •  Missing data. The expectation of missing data, such as loss-to-follow-up,  is incorporated into all clinical trial design into the trial design and adapt the statistical analysis accordingly.
  • Multiplicity. Adjusting for multiplicity necessitated by situations such as: multiple subgroup comparisons, comparisons across multiple treatment arms, the analysis of multiple outcomes, and multiple analyses of the same outcome at different times or between different variables.
  •  Meta-analyses to integrate evidence from multiple related clinical trials using random effects or other models, for example to consolidate existing findings as to the efficacy of an existing treatment.
  • Sensitivity/robustness analyses to assess the influence of key assumptions about the study population, or variations in trial methodology and/or statistical methods. Methodological and statistical concerns that are frequently the subject of robustness analyses include: non-compliance or protocol deviations, missing data, outcomes definitions such as end-points, accounting for clustering or correlation, overlapping risks in studies with composite outcomes, baseline imbalance in sample size or sample characteristics.
  • Advisory board participation and discussions with regulatory authorities on development plans and trial design matters such as Special Protocol Assistance, Pre-IND, End of Phase II and scientific advice meetings.
  • Consulting in advanced biostatistics (Bayesian statistics, multi-state modelling, latent variable modelling, generalized linear mixed modelling.

Why Us?

Outsourcing your clinical study design, data management and statistical analysis needs to Anatomise Biostats will ensure that your research data is collected and analysed correctly, first time, saving you resources over the course of your projects. This delegation will allow you to focus more intently on your research and product development goals. We can advise on the best statistical analysis and data collection approaches for your situation and aide in the correct interpretation of any results derived from your study data. This means your product or treatment is more likely to stand up under regulatory scrutiny and that the money you invest in research is giving you the return on investment you would hope for in the form of accurate, actionable insights. A unique characteristic of our services is that we are able to combine both biostatistical and bioinformatics approaches. This allows you to supplement your research queries with a genomics or big data element where beneficial. We remain open to innovation in determining the ways in which we can best serve your research goals..

Data Security & Confidentiality

All data sets sent to us for statistical analysis can be sent through encryption and kept in encrypted storage for the duration of the project and an agreed upon time there-after. We do not share your data or the details of your projects to any third parties. If privacy is particularly important to you, we will arrange for non-disclosure agreements to be signed to this effect. Our consultants are bound by an internal code of conduct which prohibits them from sharing client study details without permission.

Blockchain Integration & Hosting your Clinical Trial using DLT

We partner with experts in blockchain & distributed ledger technology to enable you to host your clinical trial on a specially dedicated blockchain platform. We can now provide programmers in this niche to update and maintain data over the duration of your clinical trial. This improves data and methodological integrity and transparency, ideally enhancing regulatory compliance.

Joint Ventures

We are always on the look-out to collaborate in novel ways with clinical big data infrastructure engineers, clinical data mining service providers, as well as life sciences related blockchain infrastructure pioneers. We partner with small to medium size research and development companies to fulfill biostatistics and bioinformatics consulting needs in the areas of biotechnology, medical device and pharmaceuticals. Predominately this comes in the form of statistical support for pre-clinical and clinical trials. We’re always open consider to new and innovative forms of collaboration. 

ProtoQSAR-MolDrug is specialized in the design, optimization, valorization, and development of new compounds (small molecules, peptides, nanomaterials, mixtures…) through Machine Learning-powered chemoinformatics and structural bioinformatics (QSARs, molecular docking, molecular dynamics, etc.).

Tools allow for the prediction and assessment of physicochemical, biological, pharmacological, and/or (eco)toxicological properties of substances with an array of advantages: (1) faster results, (2) saving of material and financial resources, (3) reduced animal testing (3Rs), (4) regulatory validity.

Research Domains: chemistry and regulatory toxicology and compound discovery and development for biotech, pharma, veterinary, cosmetics, nutraceuticals and agri-food industry.